![s(t)=-4.912t^2+18.4t+36.8](https://img.qammunity.org/2023/formulas/mathematics/college/inuavf4qpq5x0pggcfycsh1hue48c1zz03.png)
1) To find when the object strikes the ground, we need to find the roots of the equation. Using quadratic formula:
![\begin{gathered} t_(1,2)=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ t_(1,2)=\frac{-18.4\pm\sqrt[]{18.4^2-4(-4.912)(36.8)}}{2(-4.912)} \\ t_(1,2)=\frac{-18.4\pm\sqrt[]{1061.6064}}{-9.824} \\ \\ t_1=(-18.4+32.582)/(-9.824)=-1.44 \\ t_2=(-18.4-32.582)/(-9.824)=5.2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nh2xn9rwgeqia4o19vbtjufmojt9ct6si0.png)
t can't be negative, then the object strikes the ground after 5.2 seconds
2) The maximum height is the vertex of the parabola. The t-coordinate is computed as follows:
![t=(-b)/(2a)=(-18.4)/(2(-4.912))=1.87](https://img.qammunity.org/2023/formulas/mathematics/college/4nnjeztct51cczu0pb4l3j4u14pkf0m3j7.png)
It takes 1.87 seconds for the object to get to its maximum height
3) To find the height after 3.32 seconds, we have to replace t = 3.32 int the equation:
![\begin{gathered} s(3.32)=-4.192(3.32)^2+18.4(3.32)+36.8 \\ s(3.32)=-54.142+61.088+36.8 \\ s(3.32)=43.746 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ypupplpv2j38yl0uvabzhbqyjtq0i5z7o8.png)
The height was 43.746 meters