Recall the following trigonometric identities. If the legs of the right triangle have lengths a and b, the hypotenuse has length c, and the side a is adjacent to an angle θ, then:
![\begin{gathered} \sin \theta=(b)/(c) \\ \cos \theta=(a)/(c) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/z4dwpiyc73zrn1xwfb808beaxnh8su0tct.png)
Then, for the given right triangle:
![\begin{gathered} \sin (30º)=(x)/(8) \\ \cos (30º)=(y)/(8) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vha7y59k4p48hov82p1g9z6oicsiw61ah7.png)
Then, x and y are given by the expressions:
![\begin{gathered} x=8\cdot\sin (30º)=8\cdot(1)/(2)=4 \\ y=8\cdot\cos (30º)=8\cdot\frac{\sqrt[]{3}}{2}=4\cdot\sqrt[]{3} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/shoezv0a7evp0mh66ytcwgvlm2xpevvtch.png)
Therefore, the answers are:
![\begin{gathered} x=4\cdot\sqrt[]{3} \\ y=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/f2mi1c2rxa379a5ysz8gsgmeaait7jdypw.png)