SOLUTION:
We are to pick from the given tiles the pairs that are associated with each functions.
Note that each of the pairs are of the form (x,y) coordinates.
(1)
![y=6^x](https://img.qammunity.org/2023/formulas/mathematics/college/90437fug19jo4o2vqe5811s1v180ucjiqh.png)
The correct tiles for this function with explanation are given as follow;
![\begin{gathered} (1,6)\text{ } \\ y\text{ = 6 when x =1 } \\ y=6^x \\ 6=6^1 \\ \text{Correct} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/p3am1my7hfkl72ewm3xwpr9lnx2hbwtal8.png)
![\begin{gathered} (0,1) \\ y\text{ = 1 when x = 0} \\ y=6^x \\ 1=6^0 \\ \text{Correct} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/a33uv8s9qi6g8y8aymf1hbh94y6xwzatw9.png)
![\begin{gathered} (2,36) \\ y=36\text{ when x = 2} \\ y=6^x \\ 36=6^2 \\ \text{Correct} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pc3rg3vzlhx7i6gdxwrbxc9iwe4vrp0zey.png)
![\begin{gathered} (0.5,\sqrt[]{6)} \\ y\text{ = }\sqrt[]{6}\text{ when x = 0.5} \\ y=6^x \\ \sqrt[]{6}=6^(0.5) \\ \sqrt[]{6}=6^{(1)/(2)} \\ \sqrt[]{6}\text{ = }\sqrt[]{6} \\ \text{Correct} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/wo2djpaashi596f0zy09es1ax8ejewm7de.png)
For the first function, above tried tiles are the associated ones any other one different from those explained above are not associated with the fuction.
(2)
![y=\log _6x](https://img.qammunity.org/2023/formulas/mathematics/college/v3kpt8ytinwrarj7i9tqist9y1yh27uwch.png)
The correct tiles for this function are given as follow;
![(6,1),\text{ (1, 0), (36 ,2) and (}\sqrt[]{6\text{ }}\text{ , 0.5)}](https://img.qammunity.org/2023/formulas/mathematics/college/1bauqa85ss1pehq6zm6eabkqg1gx9pleb0.png)
Let me explain or prove two out of the four tiles.
![\begin{gathered} (6,\text{ 1)} \\ y\text{ = 1 when x =6} \\ y=\log _6x \\ 1=\log _66 \\ \text{Correct} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/gyc1nxzp73zzsal10ovwsb6ku11zn32isj.png)
![\begin{gathered} (\sqrt[]{6},\text{ 0.5)} \\ y\text{ = 0.5 when x = }\sqrt[]{6} \\ y=\log _6x \\ 0.5\text{ =}\log _6\sqrt[]{6} \\ (1)/(2)=\log _66^{(1)/(2)} \\ \\ \frac{1}{2\text{ }}=\text{ }(1)/(2)\log _66 \\ \\ \frac{1}{2\text{ }}=\text{ }(1)/(2)\text{ x 1} \\ \\ \frac{1}{2\text{ }}=\text{ }(1)/(2)\text{ } \\ \\ \text{Correct} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/18eaftkl0decouui3hj925aq7gj95ebr58.png)
You can also use the approach above to confirm the remaining two.