![15x+3y\leq200](https://img.qammunity.org/2023/formulas/mathematics/college/1o6ywlf45yztbmkmo567t3ai67id7yr8x9.png)
Step-by-step explanation
Step 1
let x represents the number of sandwiches
let y represents the number of drinks
hence,
the cost of the sandwich would be
![\begin{gathered} tota\text{l cost of sandwiches= 15}\cdot x \\ tota\text{l cost of sandwiches=}15x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/logkq81n8mgxacr8zu336na6nico4xprf9.png)
and
![\begin{gathered} tota\text{l cost of DRINKS= 3}\cdot y \\ tota\text{l cost of DRINKS=}3y \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/emsl8fmq6iufx7qvsfckp7qb0rkbh6rscs.png)
so, The total cost is
![\begin{gathered} \text{total cost = cost of sandwiches+cost of drinks} \\ \text{replace} \\ \text{total cost= 15x+3y} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vbr24vltefkpcc9wc6ji57l10hk9uury9i.png)
so, we have an equation for the total cost
Step 2
we are told that the group can spend at most $200, in other words the total cost must be equal or smaller than 200, in math term it is
![\begin{gathered} total\cos t=15x+3y \\ total\cos t\leq200 \\ \text{therefore} \\ 15+3y\leq200 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hu2jilihddurmygcp1sbikp6gyyb3qtjwm.png)
so, the answer is
![15+3y\leq200](https://img.qammunity.org/2023/formulas/mathematics/college/i9zt5d7vcx5uudszbxlunou6jjpifv6r3a.png)
I hope this helps you