Given:
The required frictional force to turn on a road is,
![F](https://img.qammunity.org/2023/formulas/chemistry/college/q36vovon1fhsymex74k00ntc2wrdcijqvy.png)
while the bicycle is moving at a speed of
![v](https://img.qammunity.org/2023/formulas/physics/high-school/faqmdntanxdmf65i47bjb2n7pob7e5yslf.png)
To find:
The frictional force required to make the same turn at a speed of 2v
Step-by-step explanation:
The required frictional force should be equal to the centrifugal force. So, we can write,
![F=(mv^2)/(r)](https://img.qammunity.org/2023/formulas/physics/college/5ok2axeikntd82rxf4s17nike27avi0e84.png)
Now, for the speed 2v, the frictional force is,
![\begin{gathered} F^(\prime)=(m(2v)^2)/(r) \\ =(m*4v^2)/(r) \\ =(4mv^2)/(r) \\ =4F \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/dfrxoer4zbesemq6aldr941f4cbt2ktkqq.png)
Hence, the required force is 4F.