Given the angle, θ is an angle in standard position
the terminal side passes through the point (5,12)
So,
![\begin{gathered} x=5,y=12 \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/sj5f4f0a6uix3cd6o4acf4j7m7mvb2k7si.png)
this means: opposite side = y = 12
Adjacent side = x = 5
We will find the hypotenuse (h) using the Pythagorean theorem
So,
![\begin{gathered} h^2=x^2+y^2=5^2+12^2=25+144=169 \\ h=\sqrt[]{169}=13 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1e2v1j6j8wikhmo20uu5ihbafczzswtvm2.png)
So,
![\begin{gathered} \sin \theta=(opposite)/(hypotenuse) \\ \\ \sin \theta=(y)/(h) \\ \sin \theta=(12)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ih5qrl9wcvxjmtsqlhcqw3vog6pjczx9a9.png)
So, the answer will be: 12/13