122k views
0 votes
Find the relative extrema, if any, of the function. Use the Second Derivative Test, if applicable. (If an answer does not exist, enter DNE.)f(x) = 3 sin x + 3 cos x, 0 < x < 2

User Dayana
by
4.4k points

1 Answer

3 votes

Given:


f(x)=3\sin x+3\cos x,0To find the relative maxima of the given function use second derivative test,[tex]\begin{gathered} \text{Differentiate f(x) with respect to x,} \\ f^(\prime)(x)=(d)/(dx)(3\sin x+3\cos x) \\ f^(\prime)(x)=3\cos x-3\sin x \\ \text{Set }f^(\prime)(x)=0 \\ 3\cos x-3\sin x=0 \\ \cos x=\sin x \\ (\sin x)/(\cos x)=1 \\ \tan x=1 \\ x=\tan ^(-1)(1) \\ x=(\pi)/(4)+\pi n \\ \text{But for 0}<\text{x<2}\pi \\ \text{x will take the values}, \\ x=(\pi)/(4),(5\pi)/(4)\in(0,2\pi) \end{gathered}

Thje critical points of the function are,


x=(\pi)/(4),(5\pi)/(4)

Now take the second derivative,


\begin{gathered} f(x)=3\sin x+3\cos x \\ f^(\prime)(x)=3\cos x-3\sin x \\ f^(\prime\prime)(x)=(d)/(dx)(3\cos x-3\sin x) \\ f^(\prime\prime)(x)=-3\sin x-3\cos x \end{gathered}

Put the values of the critical points in the second derivatives,


\begin{gathered} f^(\prime\prime)(x)=-3\sin x-3\cos x \\ f^(\doubleprime)((\pi)/(4))=-3\sin ((\pi)/(4))-3\cos ((\pi)/(4)) \\ =-\frac{3}{\sqrt[]{2}}-\frac{3}{\sqrt[]{2}} \\ =\frac{-6}{\sqrt[]{2}} \\ =-3\sqrt[]{2}<0 \\ \Rightarrow Function\text{ has local maximum at x=}(\pi)/(4) \end{gathered}

And,


\begin{gathered} f^(\prime\prime)(x)=-3\sin x-3\cos x \\ f^(\doubleprime)((5\pi)/(4))=-3\sin ((5\pi)/(4))-3\cos ((5\pi)/(4)) \\ =-3(-(√(2))/(2))-3(-(√(2))/(2)) \\ =\frac{6\sqrt[]{2}}{2} \\ =3\sqrt[]{2}>0 \\ \Rightarrow The\text{ function has local minimum at }x=(5\pi)/(4) \end{gathered}

Answer:


\begin{gathered} \text{ Maximum (}(\pi)/(4),\: 3√(2)) \\ \text{ Minimum (}(5\pi)/(4),\: -3√(2)) \end{gathered}

User Marshall Shen
by
4.3k points