Let:
x = Amount the woman invest in the 15% bond
y = Amount the woman invest in the CD
The woman has $50000 to invest, so:
![x+y=50000_{\text{ }}(1)](https://img.qammunity.org/2023/formulas/mathematics/college/4ofnconoql9vh25t36q7f4gv6kw6saqf7w.png)
She needs to make $6000 a year from the interest, so:
![I1+I2=6000_{\text{ }}(2)](https://img.qammunity.org/2023/formulas/mathematics/college/gh1e6dl7b5xke2rvghoxx2n8vp3yue4q8x.png)
Where:
![\begin{gathered} I1=x\cdot r1\cdot t \\ r1=0.15 \\ t=1 \\ ------ \\ I2=y\cdot r2\cdot t \\ r2=0.07 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x2sh7s6p9vkd2auc1ekvz2zkz83xsxkwfk.png)
So, we have the following system:
![\begin{gathered} x+y=50000_{\text{ }}(1) \\ 0.15x+0.07y=6000_{\text{ }}(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9wjbsf4y5zk5jcua6qqoqx9kug9qe2m3zy.png)
Let's solve using substitution:
From (1) solve for x:
![y=50000-x_{\text{ }}(3)](https://img.qammunity.org/2023/formulas/mathematics/college/efs0ldv33j5rjj8h5h66p5qefoiqht2jys.png)
Replace (3) into (2):
![\begin{gathered} 0.15x+0.07(50000-x)=6000 \\ 0.15x+3500-0.07x=6000 \\ 0.08x+3500=6000 \\ 0.08x=6000-3500 \\ 0.08x=2500 \\ x=(2500)/(0.08) \\ x=31250 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5l2csse36l87vizsoypql9jso9u8013w0w.png)
Replace x into (3):
![\begin{gathered} y=50000-31250 \\ y=18750 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6q1dhn3qsf5pmt0avseeqfmfbp4b6633z1.png)
Answer:
She will be able to invest $18750 in the CD
And she must invest at least 31250 in the 15% bond