There are two ways to divide segment AB into two subsegments with a 2:1 ratio

In general, the distance between two points on the plane is given by the formula below
![\begin{gathered} X=(x_1,y_1),Y=(x_2,y_2) \\ \Rightarrow d(X,Y)=\sqrt[]{(x_1-x_2)^2+(y_1-y_2)^2} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nrbp5d3omgq4ivc2nckuphsnqp9z2sbao9.png)
Furthermore, point C has to be on the same line as A and B, whose equation is

Additionally, the distance between A and B is
![d(A,B)=\sqrt[]{(-9)^2+(6)^2}=\sqrt[]{117}](https://img.qammunity.org/2023/formulas/mathematics/college/g0mnittzfojr3iey577384o55auh7qtxrx.png)
1) AC=2CB
![\begin{gathered} d(C,B)=\frac{\sqrt[]{117}}{3} \\ \Rightarrow\sqrt[]{(x-6)^2+(y+3)^2}=\frac{\sqrt[]{117}}{3} \\ \Rightarrow(x-6)^2+(y+3)^2=(117)/(9) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9dy56533ilrtd1bdng6jk41gwkl5h2oacb.png)
On the other hand, using the equation of the line,
![\begin{gathered} y=-(2)/(3)x+1 \\ \Rightarrow(x-6)^2+(-(2)/(3)x+4)^2=(117)/(3) \\ \Rightarrow(13)/(9)(x-6)^2=(117)/(3) \\ \Rightarrow(x-6)^2=27 \\ \Rightarrow x-6=\pm\sqrt[]{27} \\ \Rightarrow x=6\pm\sqrt[]{27} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ohntvz6cs5uc6siqfqdc0kyz2ghg1ceyjx.png)
However, x=6+sqrt(27)=11.19...-> out of the segment; therefore, the only valid value of x is
![x=6-\sqrt[]{27}](https://img.qammunity.org/2023/formulas/mathematics/college/wsvkkc79gps40e3pkzy4suh024svfb0yr5.png)
Finding y,