96.8k views
5 votes
Consider the complex number 2 = V17 (cos(104") + i sin(104°)).Plot z in the complex plane below.If necessary, round the point's coordinates to the nearest integer.Im5-4-3 -21+Re-5-4-3-2 -112.345-1-2-1-3-4-5

Consider the complex number 2 = V17 (cos(104") + i sin(104°)).Plot z in the complex-example-1
User Muraad
by
6.2k points

1 Answer

4 votes

Given:


z=\sqrt[]{17}(\cos (104^(\circ))+i\sin (104^(\circ)))

To plot this point on the z-[ane,


\begin{gathered} z=r(\cos \theta+i\sin \theta) \\ a=r\cos \theta,b=r\sin \theta \end{gathered}

For the given complex number,


r=\sqrt[]{17},\theta=104^(\circ)

It is graphed as,

The rectangular form is,


\begin{gathered} z=\sqrt[]{17}(\cos (104^(\circ))+i\sin (104^(\circ))) \\ z=\sqrt[]{17}((-0.2419)+i(0.9703)) \\ z=-0.9974+i4.0006 \\ (a,b)=(-0.9974,4.0006) \end{gathered}

The point on the z-plane is,

Consider the complex number 2 = V17 (cos(104") + i sin(104°)).Plot z in the complex-example-1
Consider the complex number 2 = V17 (cos(104") + i sin(104°)).Plot z in the complex-example-2
User Daniel Fath
by
5.9k points