Answer:
The 95% confidence interval is 157.28 to 167.72
Step-by-step explanation:
Number of coffee, N = 28
Mean, µ = 162.5
Standard deviation, σ = 14.1
Confidence Level, CL = 95%
z-value for 95% confidence interval = 1.96
The confidence interval is calculated below
![\begin{gathered} CI=\mu\pm z((\sigma)/(√(N))) \\ \\ CI=162.5\pm1.96((14.1)/(√(28))) \\ \\ CI=162.5\pm5.22 \\ \\ CI=(162.5-5.22)\text{ to \lparen162.5+5.22\rparen} \\ \\ CI=157.28\text{ to 167.72} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6boco3zvkq9p1ts458koytpca2j7j6mjng.png)
Therefore, the 95% confidence interval is 157.28 to 167.72