![y=(1)/(1+e^x)](https://img.qammunity.org/2023/formulas/mathematics/college/a4jqjt4cqnerkyfvmh5y36dpfhfxdkwwka.png)
To get a table with values, we have to choose a value for x and calculate the corresponding value for y. For example, choosing x = -5, -2.5, 0, 2.5 and 5.
• x = -5
![y=(1)/(1+e^(-5))\approx0.9933](https://img.qammunity.org/2023/formulas/mathematics/college/399gjyyj5i38ofzhpz0epmtj1rs1vdw4tk.png)
• x = -2.5
![y=(1)/(1+e^(-2.5))\approx0.9241](https://img.qammunity.org/2023/formulas/mathematics/college/ag6oy2ux95tl8q39sep9psp1fbhlg134fr.png)
• x = 0
![y=(1)/(1+e^0)=(1)/(1+1)=(1)/(2)=0.5000](https://img.qammunity.org/2023/formulas/mathematics/college/poaa0wb0jihwlyq8ffi0x7myl54dqfp163.png)
• x = 2.5
![y=(1)/(1+e^(2.5))\approx0.0759](https://img.qammunity.org/2023/formulas/mathematics/college/kw23dabqpl5nli05mi3hmfq46j4gihm2is.png)
• x = 5
![y=(1)/(1+e^5)\approx0.0067](https://img.qammunity.org/2023/formulas/mathematics/college/ru05ad0bx57mn8ieg1ie64mnxej1isxa2d.png)
As we can see, higher values of x get near 0, and lower values of x get near 1. As the logistic functions have the form:
Then we can suppose that those values are the asymptotes. To confirm we have to get the limits when x approximates -∞ and +∞:
![\lim _(x\to-\infty)(1)/(1+e^x)=1](https://img.qammunity.org/2023/formulas/mathematics/college/rqa37dqekibot9dk7os01rfnt7dhp6ble0.png)
![\lim _(x\to+\infty)(1)/(1+e^x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/wx13rt9s8f7o3oa0c0hvawp7ycqg59kydm.png)
Then our asymptotes are y = 0, 1 and we have no horizontal asymptotes.
Finally, as the x values include from -∞ to +∞, then the domain are all the real values while the range are the values between 0 and 1.
Answer:
• Table
• Asymptotes: ,y = 0, 1 ,and ,x = N/A
,
• Domain: ,all real numbers.
,
• Range: ,(0, 1)
,
• Graph