Two parallel lines have the same slope.
![\begin{gathered} y=mx+b \\ m=\text{slope} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h1po7e5of4wkrjdxutjbmri0azdyov3vkd.png)
In the given equation the slope is:
![\begin{gathered} y=(8)/(5)x-1 \\ \\ m=(8)/(5) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/picv69z9u1pc0vgim457c8c0nyt0cj65h7.png)
Then, you need to write the equations to slope-intercept form (solve for y) to identiy the slope:
Option 1
![\begin{gathered} 8x+5y=35 \\ 5y=-8x+35 \\ y=-(8)/(5)x+(35)/(5) \\ \\ y=-(8)/(5)x+7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/46rr2udvr1xp8x4jsb7vw7eccymvfjf395.png)
The slope in this one is -8/5. (Is not parallel to the given equation)
Option 2:
![\begin{gathered} 5x+8y=-24 \\ 8y=-5x-24 \\ y=-(5)/(8)x-(24)/(8) \\ \\ y=-(5)/(8)x-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/4dxsqogfklxde9bxjenemkgi9xbihguwms.png)
The slope in this one is -5/8. (Is not parallel to the given equation)
Option 3:
![\begin{gathered} 5x-8y=-32 \\ -8y=-5x-32 \\ y=(-5)/(-8)x-(32)/(-8) \\ \\ y=(5)/(8)x+4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5y9c875v3oims1bleieic5ctea9giv5de9.png)
The slope in this one is 5/8. (Is not parallel to the given equation)
Option 4:
![\begin{gathered} 5y-8x=-35 \\ 5y=8x-35 \\ y=(8)/(5)x-(35)/(5) \\ \\ y=(8)/(5)x-7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/96gpfzt842ttqu09xe6uxuzst5aor5kk0t.png)
The slope in this one is 8/5. This line is parallel to the given equation.
Answer: Option 4 (5y-8x=-35)