36.8k views
1 vote
Use the sum and difference identities to determine the exact value of the following expression.211sinЗл+43

Use the sum and difference identities to determine the exact value of the following-example-1

1 Answer

4 votes

We are given the following expression:


\sin ((3\pi)/(4)+(2\pi)/(3))

the identity for the sum of angles for sines is the following:


\sin (\alpha+\beta)=\sin \alpha\cos \beta+\cos \alpha\sin \beta

In this case, we have:


\begin{gathered} \alpha=(3\pi)/(4) \\ \\ \beta=(2\pi)/(3) \end{gathered}

Substituting in the identity we get:


\sin ((3\pi)/(4)+(2\pi)/(3))=\sin ((3\pi)/(4))\cos ((2\pi)/(3))+\cos ((3\pi)/(4))\sin ((2\pi)/(3))

we have the following value:


\sin ((3\pi)/(4))=\frac{1}{\sqrt[]{2}}
\cos ((3\pi)/(4))=-\frac{1}{\sqrt[]{2}}
\sin ((2\pi)/(3))=\frac{\sqrt[]{3}}{2}
\cos ((2\pi)/(3))=-(1)/(2)

Now, we substitute the values in the indentity:


\sin ((3\pi)/(4))\cos ((2\pi)/(3))+\cos ((3\pi)/(4))\sin ((2\pi)/(3))=(\frac{1}{\sqrt[]{2}})(-(1)/(2))+(-\frac{1}{\sqrt[]{2}})(\frac{\sqrt[]{3}}{2})

Simplifying we get:


(\frac{1}{\sqrt[]{2}})(-(1)/(2))+(-\frac{1}{\sqrt[]{2}})(\frac{\sqrt[]{3}}{2})=-\frac{1}{2\sqrt[]{2}}-\frac{\sqrt[]{3}}{2\sqrt[]{2}}

Solving the operations:


-\frac{1}{2\sqrt[]{2}}-\frac{\sqrt[]{3}}{2\sqrt[]{2}}=-0.97

Therefore, the value of the sine is -0.97

User Peter Saxton
by
3.4k points