35.9k views
0 votes
The equation of a curve is xy squared minus 2x square y squared equal 0. Find the gradient of the tangent to the curve at (1,2)?

1 Answer

5 votes

Solution


xy^2-2x^2y^2=0

we need to find the derivative with respect to x. dy/dx


\begin{gathered} (d)/(dx)(xy^2-2x^2y^2=0)=(d)/(dx)(xy^2)-2(d)/(dx)(x^2y^2)=0 \\ \\ \text{ using product rule} \\ \\ \Rightarrow x(d)/(dx)(y^2)+y^2(d)/(dx)(x)-2x^2(d)/(dx)(y^2)+2y^2(d)/(dx)(x^2)=0 \\ \end{gathered}

Applying chain rule


\begin{gathered} x\cdot(d)/(dy)(y^2)\cdot(dy)/(dx)+y^2-2x^2\cdot(d)/(dy)(y^2)\cdot(dy)/(dx)+2y^2(2x)=0 \\ \\ \Rightarrow x(2y)(dy)/(dx)+y^2-2x^2(2y)(dy)/(dx)+4xy^2=0 \\ \\ \Rightarrow2xy(dy)/(dx)+y^2-4x^2y(dy)/(dx)+4xy^2=0 \\ \\ \Rightarrow(2xy-4x^2y)(dy)/(dx)=-y^2-4xy^2 \\ \\ \Rightarrow(dy)/(dx)=(-(y^2+4xy^2))/(2xy-4x^2y)=(y^2+4xy^2)/(4x^2y-2xy) \\ \\ \Rightarrow(dy)/(dx)=(y^(2)+4xy^(2))/(4x^(2)y-2xy) \end{gathered}

At point (1,2)


(dy)/(dx)=((2)^2+4(1)(2)^2)/(4(1)^2(2)-2(1)(2))=5

Using slope intercept equation


\begin{gathered} y-y_1=m(x-x_1) \\ \\ y-2=5(x-1) \\ \\ y-2=5x-5 \\ \\ \Rightarrow y=5x-5+2 \\ \\ \Rightarrow y=5x-3 \end{gathered}

User Hamed
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories