Answer:
a. Sin (θ) = √35 / 6
b. Tan (θ) = Tan θ = √35
c. Sec (θ) = 6
d. Csc (90° -θ) = 6
Explanations:
Note that according to trigonometric identities:
cos θ = Adjacent / Hypotenuse
From the question:
cos θ = 1/6
Comparing this with the given trigonometric identity:
Adjacent, A = 1
Hypotenuse, H = 6
Let us look for the opposite, O
Using the pythagora's theorem
H² = A² + O²
6² = 1² + O²
36 = 1 + O²
36 - 1 = O²
O² = 35
O = √35
Therefore, Opposite = √35
a) Sin θ = Opposite / Hypotenuse
Sin θ = √35 / 6
b) Tan θ = Opposite / Adjacent
Tan θ = √35 / 1
Tan θ = √35
c) Sec θ = 1 / cos θ
Sec θ = 1 ÷ 1/6
Sec θ = 1 x 6
Sec θ = 6
d) Csc ( 90 - θ) = Sec θ
Since Sec θ = 6
Csc ( 90 - θ) = 6