We are asked to determine the length of CD, to do that we will use the following relationship:
![\begin{gathered} CD=21+x+1 \\ CD=22+x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/stsw7xy83qv0m237lcvx8rqi25qr9ikfhh.png)
Therefore, we need to determine the value of "x". To do that we will use the intersecting chords theorem, that is:
![(21)(x+1)=(9)(3x-9)](https://img.qammunity.org/2023/formulas/mathematics/college/r800i1bp1radidf95k69i2btjui3m65w1l.png)
Now we solve for "x" first by applying the distributive law:
![21x+21=27x-81](https://img.qammunity.org/2023/formulas/mathematics/college/rn4zeu99pbvdlj8e1u58mmcogjn2wchl07.png)
Now we will subtract 21 to both sides:
![\begin{gathered} 21x=27x-81-21 \\ 21x=27x-102 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xuhumgqb5ju6lc0apyilg8lp9ilvo2lli0.png)
Now we will subtract 27x to both sides:
![\begin{gathered} 21x-27x=-102 \\ -6x=-102 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yo7zywzsgw0kmsl9m8648fnehjjyy9hx0t.png)
Dividing both sides by -6:
![x=-(102)/(-6)=17](https://img.qammunity.org/2023/formulas/mathematics/college/x5vsvhahlj0b01lclseqx6j9hpv4plt3tz.png)
Now we replace the value of "x" in the expression for segment CD:
![\begin{gathered} CD=22+17 \\ CD=39 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rtvjsiizkgg0001j7sro7rcu8t0z8lpdr1.png)
Therefore, the length of CD is 39.