Hello! First, let's write some important information contained in the exercise:
committee = 6 students
class: 28 students:
- 10 males
- 18 females
Let's consider the rule: At least three females must be on the committee, so we have some cases, look:
_F_ * _F_ * _F_ * __ * __ * __
1st option:
3 females and 3 males
_F_ * _F_ * _F_ * _M_ * _M_ * _M_
2nd option:
4 females and 2 males
_F_ * _F_ * _F_ * _F_ * _M_ * _M_
3rd option:
5 females and 1 male
_F_ * _F_ * _F_ * _F_ * _F_ * _M_
4th option:
6 females and 0 male
_F_ * _F_ * _F_ * _F_ * _F_ * _F_
Now, we have to use the formula below and find the number of possible combinations:
![C_(n,p)=(n!)/(p!\cdot(n-p)!)](https://img.qammunity.org/2023/formulas/mathematics/college/4mljqeziy1f6q6yn9fp8x3zfh398t6kjqo.png)
Let's calculate each option below:
1st:
3 females:
![C_(18,3)=(18!)/(3!\cdot(18-3)!)=(18\cdot17\cdot16\cdot15!)/(3\cdot2\cdot1\cdot15!)=(4896)/(6)=816](https://img.qammunity.org/2023/formulas/mathematics/college/fnoc17feuhka24vs9444rxqzzpw5sb8mhk.png)
3 males:
![C_(10,3)=(10!)/(3!\cdot(10-3)!)=(10\cdot9\cdot8\cdot7!)/(3\cdot2\cdot1\cdot7!)=(720)/(6)=120](https://img.qammunity.org/2023/formulas/mathematics/college/7xsk59aksaboqb8e85z9gsvagnwl7aqgnl.png)
3 females and 3 males: 816 * 120 = 97920
2nd option:
4 females:
![C_(18,4)=(18!)/(4!\cdot(18-4)!)=(18\cdot17\cdot16\cdot15\cdot14!)/(4\cdot3\cdot2\cdot1\cdot14!)=(73440)/(24)=3060](https://img.qammunity.org/2023/formulas/mathematics/college/frrl1vj9cu17ftlt31lpuq9yk1trf1pt9d.png)
2 males:
![C2=(10!)/(2!\cdot(10-2)!)=(10\cdot9\cdot8!)/(2\cdot1\cdot8!)=(90)/(2)=45](https://img.qammunity.org/2023/formulas/mathematics/college/3c2zmscybu5nnzk95pkypn16pc6o64ico3.png)
4 females and 2 males: 3060* 45 = 137700
3rd option:
5 females:
![C_(18,5)=(18!)/(5!\cdot(18-5)!)=(18\cdot17\cdot16\cdot15\cdot14\cdot13!)/(5\cdot4\cdot3\cdot2\cdot1\cdot13!)=(1028160)/(120)=8568](https://img.qammunity.org/2023/formulas/mathematics/college/9no849p3tv5a3bvil22x3ewpwf1wl274cp.png)
1 male:
![C_(10,1)=(10!)/(1!\cdot(10-1)!)=(10!)/(1\cdot9!)=(3628800)/(362880)=10](https://img.qammunity.org/2023/formulas/mathematics/college/w4ytqsb4vja3oma64j55vovyjt166mu8bp.png)
5 females and 1 male = 8568 * 10 = 85680
4th option:
6 females and 0 male:
![C_(18,6)=(18!)/(6!\cdot(18-6)!)=(18\cdot17\cdot16\cdot15\cdot14\cdot13\cdot12!)/(6\cdot5\cdot4\cdot3\cdot2\cdot1\cdot12!)=(13366080)/(720)=18564](https://img.qammunity.org/2023/formulas/mathematics/college/tqcbtkyhynbaumfm5hmeok6abu3h5bkr0w.png)
![C_(10,0)=(10!)/(0!\cdot(10-0)!)=(10!)/(10!)=1](https://img.qammunity.org/2023/formulas/mathematics/college/y6t5nxxmik0yczmnjb99iy4mdecb1ia4j5.png)
6 females and 0 male: 18564 * 1 = 18564
To finish the exercise, we have to sum the four options:
97920 + 137700 + 85680 + 18564 = 339864
So, right answer A: 339864.