Explanation.
The question asked us to write the equation of the line that passes through the points (2,8) and (-2,10)
To do this, we can use the formula:
![(y_2-y_1)/(x_2-x_1)=(y-y_1)/(x-x_1)](https://img.qammunity.org/2023/formulas/mathematics/college/py7p57u6r8ozipr1h1vor1uga04o9f7bzm.png)
In our case, we have
![\begin{gathered} x_1=2 \\ y_1=8 \\ x_2=-2 \\ y_2=10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/p4k5mhpqu2hj0k1t70dodmhqo1m9g7g5px.png)
We will simply put all the values above into the formula to get the equation of the line
![(10-8)/(-2-2)=(y-8)/(x-2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/msusdcchbzzuslwp5d6fsuuoaqh7j7xgez.png)
Simplifying further
![\begin{gathered} (2)/(-4)=(y-8)/(x-2) \\ \\ -(1)/(2)=(y-8)/(x-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/feervnbo048ewed562vi78xufy9uxy4v8w.png)
Cross multiplying
![\begin{gathered} y-8=-(1)/(2)\left(x-2\right) \\ y-8=-(1)/(2)x+1 \\ y=-(1)/(2)x+1+8 \\ y=-(1)/(2)x+9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/gnku1f9dfhdnb97vsg9pqc59w917dkh3ib.png)
Therefore, the equation of the line is
![y=-(1)/(2)x+9](https://img.qammunity.org/2023/formulas/mathematics/high-school/xzfihho4h9pwedhaltod85zbwpmbp689qc.png)