220k views
5 votes
+ 16x + 71 tion provided to write the vertex form equation of each parabola 2) y = x² - 2x - 5 y=ola-h2xmin Ye21XR125 Identify the vertex and axis of symmetry of each. Then sketch the graph. 15) f(x)=-3(x - 2)2 - 4 16) S(x)=-1)+4 po

1 Answer

3 votes

Vertex

General equation of a parable


f(x)=a(x-h)^2+k

where


(h,k)

is the vertex

for our equation


f(x)=-2(x+5)^2-2

the vertex is


(-5,-2)

axis of symmetry

axis of symmetry is the x value of the vertex, then


x=-5

Graph

we replace values on x to find points of the parable

for example x=0


\begin{gathered} f(0)=-2(0+5)^2-2 \\ f(0)=-2(5)^2-2 \\ f(0)=-2*25-2 \\ f(0)=-50-2 \\ f(0)=-52 \end{gathered}

x=-10


\begin{gathered} f(-10)=-2(-10+5)^2-2 \\ f(-10)=-2(-5)^2-2 \\ f(-10)=-2*25-2 \\ f(-10)=-50-2 \\ f(-10)=-52 \end{gathered}

our three points


\begin{gathered} (-5,-2) \\ (0,-52) \\ (-10,-52) \end{gathered}

+ 16x + 71 tion provided to write the vertex form equation of each parabola 2) y = x-example-1
User Mark Denom
by
7.1k points