Given the following function:
![v(h)=\sqrt[]{64h}](https://img.qammunity.org/2023/formulas/mathematics/college/5tc1pq5041ukduh3s5xkd169xfxq2j0gua.png)
we can separate both factors inside the square root to get:
![\begin{gathered} v(h)=\sqrt[]{64h}=\sqrt[]{64}\cdot\sqrt[]{h}=8\cdot\sqrt[]{h} \\ \Rightarrow v(h)=8\cdot\sqrt[]{h} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vwee3djpznet91al9yt1hnggcu1zbeqq69.png)
next, to determine the velocity at the bottom of the hill, we can make h = 134, and evaluate the function:
![\begin{gathered} h=134 \\ \Rightarrow v(134)=8\cdot\sqrt[]{134}=8(11.58)=92.64 \\ v(h)=92.64(ft)/(s) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jae6ho7oh336oql0luzcuofpgrjwoy326h.png)
therefore, the velocity at the bottom of a 134 foot hill is 92.64 ft/s