Given:
Mean = 71 beats per minute
Standard deviation = 3 beats per minute
Required:
The percentage of the population that has a resting heart rate between 71 and 74
First, we convert to data to z-score values using the relationship below:
![\begin{gathered} z\text{ = }\frac{x\text{ - }\mu}{\sigma} \\ \text{where }\mu\text{ is the mean} \\ \sigma\text{ is the standard deviation} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oleivxabgjuhgs3jy19zh4juda6a67hylf.png)
Z-score for 71 beats per minute:
![\begin{gathered} z_1\text{ = }\frac{71\text{ - 71}}{3} \\ =\text{ 0} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/x6jgspyacjt9klpxiev7r4xfv9rwisct77.png)
Z-score for 74 beats for minute:
![\begin{gathered} z_2\text{ = }\frac{74\text{ - 71}}{3} \\ =\text{ 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9yth3mlgm2ytnbs19og12k7ie2f8nb9t88.png)
Using the normal distribution table, we can find the probability of having a population with a z-score between 0 and 1.
So,
![\begin{gathered} P(0\text{ }\leq\text{ x }\leq\text{ 1) = 0.84134 - 0.5} \\ =\text{ 0.34134} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rmggm0clns8wx29ys7plo3vb41190v3m1p.png)
The percentage of the population that has a resting heart rate between 71 and 74 is :
![\begin{gathered} =\text{ 0.34134 }*\text{ 100\%} \\ =\text{ 34\% (nearest percent)} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/y468jec3h6yg3wrj6nlxxfn2ptly46qmr5.png)
Answer = 34%