Answer: Lateral area = 750 square inches
Lateral area of a prism is given as

Perimeter = a + b + c
Firstly, we need to find the base using pythagoras theorem
![\begin{gathered} \text{Hypotenus}^2=opposite^2+adjacent^2 \\ \text{Let the base = x} \\ 17^2=15^2+x^2 \\ 289=225+x^2 \\ \text{Isolate x}^2 \\ x^2\text{ = 289 - 225} \\ x^2\text{ = 64} \\ \text{Take the square root of both sides} \\ \text{x = }\sqrt[]{64} \\ x\text{ = 8 in} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h4jv7iait6ctmqfgoguhoakke146cv0u1i.png)
Lateral area = Perimeter x height
Perimeter = a + b + c
Perimeter = 17 + 17 + 16
Perimeter = 50 inches
Lateral area = 50 x 15
Lateral area = 750 square inches
Therefore, the lateral area of the prism is 750 square inches