The function given is,
![f(x)=-3+7(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/o46awxtkh28hbtbcoyg6m3eqiij0ipvwkc.png)
We are told to graph the function, state a point (x₀,y₀) and also solve for the slope.
The graph of the function will be shown below
Note:
![-1.571\text{ in fraction is }\frac{\text{-11}}{7}](https://img.qammunity.org/2023/formulas/mathematics/college/vuftmouflzx72x0jwl51ry0ttmrqq3402t.png)
From the graph, the points are
![\begin{gathered} (x_1,y_1)\rightarrow(-(11)/(7),0) \\ (x_2,y_2)\rightarrow(0,11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cyn32i75pbf17ihkthfva0lq49m5dovvlo.png)
The formula for the slope(m) between two points is,
![m=(y_2-y_1)/(x_2-x_1)](https://img.qammunity.org/2023/formulas/mathematics/high-school/78uaqhwt0aws3qfwxigaftpihnmb1gzxtp.png)
Substituting the values of x1 = -11/7, y1 = 0, x2 = 0, y2 = 11 in order to solve for the slope.
![\begin{gathered} m=(11-0)/(0--(11)/(7))=(11)/(0+(11)/(7))=(11)/((11)/(7)) \\ m=11/(11)/(7)=11*(7)/(11)=(77)/(11)=7 \\ \therefore m=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/yjeutum7kno43w0goh7dw4gp24hzfc690x.png)
Hence, the slope
![m=7](https://img.qammunity.org/2023/formulas/mathematics/college/6j06js4z7ffw4in0gyb0hyodqs2xay0pfs.png)