10)
In general, the sum of the inner angles of a polygon is given by the formula below
![\begin{gathered} sum\text{ of interior angle}=(n-2)*180\degree \\ n\rightarrow\text{ number of sides} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6qcf1edd0mpg5nmv1efgjunn8icz0x1n2d.png)
Therefore, in our case, since we are dealing with a polygon of seven sides,
![\begin{gathered} (7-2)*180\degree=5*180\degree=900\degree \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3oh8ww9dq7mee4igb9qjzqotl2vovfd6p5.png)
Then,
![\begin{gathered} \Rightarrow134+109+113+113+149+133+x=900 \\ \Rightarrow x=149 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mdog0s3aeyvutu01drknoqv4oz6dl2kqkj.png)
Thus, the answer to question 10 is x=149°.
11)
Using the formula for the sum of the inner angles of a polygon used in part 10),
![\begin{gathered} (4-2)*180=360 \\ \Rightarrow7x+6x+x+2x=360 \\ \Rightarrow16x=360 \\ \Rightarrow22.5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/42wr5qrguckjj7mgj6qt0ap28a1jes4hou.png)
Therefore, the answer to question 11) is x=22.5