Given:
The mass of the mars, M=6.42×10²³ kg
The orbital period of the satellite, T=88640 s
To find:
The radius of the orbit of the satellite.
Step-by-step explanation:
The orbital period is given by the equation,
![T=2\pi\sqrt[]{(r^3)/(GM)}](https://img.qammunity.org/2023/formulas/physics/college/xk4a9utfmvj6lb3hl3qmxk1uzzqgpfh76u.png)
Where G is the gravitational constant.
On rearranging the above equation,
![\begin{gathered} (T^2)/(4\pi^2)=(r^3)/(GM) \\ \Rightarrow r=\sqrt[3]{(T^2GM)/(4\pi^2)} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/rdiuu6vsy1ty1t9qo6dr8bwllf5s4t9u75.png)
On substituting the known values,
![\begin{gathered} r=\sqrt[3]{(88640^2*6.67*10^(-11)*6.42*10^(23))/(4\pi^2)} \\ =20.43*10^6\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/pjuxo4qchl45xn9n4sdvfh9voy7rrd26oo.png)
Final answer:
The radius of the orbit of the satellite is 20.43×10⁶ m