147k views
3 votes
155) If r and s are the roots of x^2 + px + q = 0, then find each of the following in terms of p and q.iii) r^2s + rs^2

155) If r and s are the roots of x^2 + px + q = 0, then find each of the following-example-1
User Croises
by
3.5k points

1 Answer

6 votes

N 155

we have

x^2+px+q=0

r and s are roots

that means

x^2+px+q=(x-r)(x-s)

(x-r)(x-s)=x^2-xs-xr+sr=x^2-(s+r)x+sr

so

x^2+px+q=x^2-(s+r)x+sr

that means

p=-(s+r) -----> equation 1

q=sr -----> equation 2

Part 1

r^2+s^2

squared equation 1

p^2=-(s+r)^2

p^2=(s^2+2sr+r^2)

Remember that

q=sr (equation 2)

so

p^2=(s^2+2q+r^2)

p^2=s^2+r^2+2q

r^2+s^2=p^2-2q

Part 4

r^4+s^4

we have

(r^2+s^2)=(-p^2-2q)

squared both sides

(r^2+s^2)^2=(-p^2-2q)^2

r^4+2r^2*s^2+s^4=p^4+4p^2q+4q^2

r^4+s^4=(p^4+4p^2q+4q^2)-2r^2*s^2

Remember that

q=sr

so

2r^2*s^2=2q^2

substitute

r^4+s^4=(p^4+4p^2q+4q^2)-2q^2

r^4+s^4=p^4+4p^2q+2q^2

Part 3

r^2s+rs^2

p=-(s+r) -----> equation 1

q=sr -----> equation 2

Multiply p*q

p*q=-(s+r)*(sr)

p*q=-(s^2r+r^2s)

therefore

r^2s+rs^2=-p*q

Part 2

โˆš(p^2 - 4q)

we have

p^2=(s+r)^2

p^2=(s^2+2q+r^2)

4q=4sr

(s^2+2q+r^2)-4sr

2q=2sr

so

(s^2+2sr+r^2)-4sr

s^2-2sr+r^2

rewrite as perfect squares

โˆš(r-s)^2=r-s

User Tomax
by
4.2k points