Recall that the interior angles of a regular quadrilateral add up to 360 degrees, and a right angle has a measure of 90 degrees.
Let x° be the measure of the fourth angle, then we can set the following equation:
![40^(\circ)+90^(\circ)+90^(\circ)+x^(\circ)=360^(\circ).](https://img.qammunity.org/2023/formulas/mathematics/college/dnllripami5vkv0pwnf2av0f2r64wjs2ni.png)
Adding like terms we get:
![220^(\circ)+x^(\circ)=360^(\circ).](https://img.qammunity.org/2023/formulas/mathematics/college/hktvcvct17itvxb7pmp162kmxr4o1kmgl1.png)
Subtracting 220 degrees from the above result we get:
![\begin{gathered} 220^(\circ)+x^(\circ)-220^(\circ)=360^(\circ)-220^(\circ), \\ x^\circ=140^\circ. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pup5w196mvetl1bgjcot5tfzl3zz5lld5w.png)
Answer:
![140^(\circ).](https://img.qammunity.org/2023/formulas/mathematics/college/e432uuk40adaji9qtr46x3iz0s7nrppxd9.png)