we have that
B=5 degrees
C=125 degrees
b=200 units
step 1
Find out the measure of angle A
Remember that
the sum of the interior angles in any triangle must be equal to 180 degrees
so
A+B+C=180
substitute given values
A+5+125=180
A=180-130
A=50 degrees
step 2
Applying the law of sines
![(\sin A)/(a)=(\sin B)/(b)=(\sin C)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/dwc66mjebk1jvhqbzm1audqtmju1mnx2km.png)
Find out the value of a
![(\sin A)/(a)=(\sin B)/(b)](https://img.qammunity.org/2023/formulas/mathematics/college/kmz05v36df1zlnwjymjkk51p4seohz92on.png)
substitute given values
![(\sin 50^o)/(a)=(\sin 5^o)/(200)](https://img.qammunity.org/2023/formulas/mathematics/college/8kpthy9ca2qb20blnvbfmfmeh7axq8wmkq.png)
solve for a
![a=(200\cdot\sin 50^o)/(\sin 5^o)](https://img.qammunity.org/2023/formulas/mathematics/college/2w76oeegbhv9ggsefkahnm4t88f6ymtoiu.png)
a=1,757.9 units
step 3
Find out the value of c
![(\sin B)/(b)=(\sin C)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/d9hiajcvyuv8mnnmxn67ydhx6spp3x3xu8.png)
substitute given values
![(\sin 5^o)/(200)=(\sin 125^o)/(c)](https://img.qammunity.org/2023/formulas/mathematics/college/tttasisg3z99kbyn6hhwv8blspk02pmm4m.png)
![c=(200\cdot\sin 125^o)/(\sin 5^o)](https://img.qammunity.org/2023/formulas/mathematics/college/xjsmudnvnp6e352zdkceju2zwvstm6hb8y.png)
c=1,879.7 units