Choose two consecutive points on the graph and find the rate of change.
We will start with t = 1000 and t = 1500:
![P(1000)=12.643(1.0027)^(1000)=187.4412](https://img.qammunity.org/2023/formulas/mathematics/college/nooi4rforfsfvzd4umwnmen65i1r7v3s65.png)
![P(1500)=12.643(1.0027)^(1500)=721.7263](https://img.qammunity.org/2023/formulas/mathematics/college/g3q3oy49yclry7kv0f06gqkjot26pdvshj.png)
Remember that the rate of change is found by the difference in y over the difference in x.
![RATEOFCHANGE=(721.7263-187.4412)/(1500-1000)](https://img.qammunity.org/2023/formulas/mathematics/college/h1onne1vpozieen0oh86a6q7smmhpgyby7.png)
![RATEOFCHANGE=(534.2851)/(500)\approx1.0686](https://img.qammunity.org/2023/formulas/mathematics/college/534zwdyesy090ew23hubvv0u8d5yiz6r5n.png)
Let's do it now for t = 1500 and t = 2000.
![P(1500)=12.643(1.0027)^(1500)=721.7263](https://img.qammunity.org/2023/formulas/mathematics/college/g3q3oy49yclry7kv0f06gqkjot26pdvshj.png)
![P(2000)=12.643(1.0027)^(2000)=2778.9454](https://img.qammunity.org/2023/formulas/mathematics/college/1ihqawqi4wmqplu44yw4efltsv9cntg42q.png)
In this case the rate of change would be:
![\text{rateofchange=}(2778.9454-721.7263)/(2000-1500)](https://img.qammunity.org/2023/formulas/mathematics/college/9f4l5kw4wdtpple6uubtg63no18ag9fy32.png)
![\text{rateofchange}=(2057.2191)/(500)\approx4.1144](https://img.qammunity.org/2023/formulas/mathematics/college/ts3267haoe0f805qhgl8khzeal8sxgo1bv.png)
The slopes are different and due to the type of function they will always increase when taking larger values.