![f(x)=-(1)/(4)\sqrt[]{8-4x}+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/prmo5jg6gmnw33ef38qzapqp3ki3aa37yc.png)
a)
The x-intercept can be found as:
![\begin{gathered} f(x)=0 \\ so\colon \\ -(1)/(4)\sqrt[]{8-4x}+1=0 \\ -(1)/(4)\sqrt[]{8-4x}=-1 \\ \sqrt[]{8-4x}=4 \\ 8-4x=16 \\ 4x=8-16 \\ 4x=-8 \\ x=-(8)/(4) \\ x=-2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4vh06macnogyd7oefmgzbfh6xmjiu5k3ru.png)
Therefore, the x-intercept is: (-2,0)
The y-intercept can be found evaluating the function for x = 0, so:
![\begin{gathered} f(0)=-(1)/(4)\sqrt[]{8-4(0)}+1 \\ f(0)=1-\frac{\sqrt[]{2}}{2} \\ f(0)\approx0.29 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ku3fgb0zzuaurzxhiiih3vt7eqx9w5ilzr.png)
b) The parent function for this is given by:
![g(x)=\sqrt[]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/935x7qa9naqa6feun4t3lbo01xvkpbm2xz.png)
c)
1st: A reflection over y-axis:
![\begin{gathered} y=g(-x) \\ y=\sqrt[]{-x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/kw3nutnyjofkj3dirfne1lc43g7hsfjq8f.png)
2nd: A horizontal compression:
![\begin{gathered} y=g(-4x) \\ y=\sqrt[]{-4x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/k8yc9ssal9kzfz21djsdz9km8t40ore19o.png)
3rd: A horizontal translation 8 units to the left:
![\begin{gathered} y=g(x+8) \\ y=\sqrt[]{-4x+8}=\sqrt[]{8-4x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ouz9l9u2i1rrxd2mdcl01uidfj7noll3zb.png)
4th: A reflection over y-axis:
![\begin{gathered} y=-g(x) \\ y=-\sqrt[]{8-4x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/90ogwxo8l6obwasfnoptae2u4xnj65o32c.png)
5th: A vertical compression:
![\begin{gathered} y=(1)/(4)g(x) \\ y=-(1)/(4)\sqrt[]{8-4x} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ctx1s0agp66x1p0hg26fjjn5zhbgbf3ig3.png)
6th: A vertical translation 1 unit up:
![\begin{gathered} y=g(x)+1 \\ y=-(1)/(4)\sqrt[]{8-4x}+1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jpsjgzfjzrtb96pz7asgauelibbws9gusr.png)
d)
Where the blue graph is the parent function:
![g(x)=\sqrt[]{x}](https://img.qammunity.org/2023/formulas/mathematics/high-school/935x7qa9naqa6feun4t3lbo01xvkpbm2xz.png)
And the red graph is the function after the transformations:
![f(x)=-(1)/(4)\sqrt[]{8-4x}+1](https://img.qammunity.org/2023/formulas/mathematics/high-school/prmo5jg6gmnw33ef38qzapqp3ki3aa37yc.png)
e)
The domain and the range are:
![\begin{gathered} D\colon\mleft\lbrace x\in\R\colon x\le2\mright\rbrace \\ R\colon\mleft\lbrace y\in\R\colon y\le1\mright\rbrace \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/mcskoa9a4xzt0g52vl9sdbst51sp05m8ca.png)