Answer:
![-4x-2h-3](https://img.qammunity.org/2023/formulas/mathematics/college/ljsei4sts2v4kvzrhav3nxi4lu72gk8bra.png)
Explanations:
Given the function
![f(x)=-2x^2-3x+6](https://img.qammunity.org/2023/formulas/mathematics/college/fesbn0ns553kmrpekik1f4yt25n04sgsfm.png)
We are to look for the difference quotient:
![(f(x+h)-f(x))/(h)](https://img.qammunity.org/2023/formulas/mathematics/high-school/17t90244gmpmpb277486zmwgro40kqpbqz.png)
Get f(x + h)
![\begin{gathered} f(x+h)=-2(x+h)^2-3(x+h)+6 \\ f(x+h)=-2(x^2+2xh+h^2)-3x-3h+6 \\ f(x+h)=-2x^2-4xh-2h^2-3x-3h+6 \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6vvb8oaxr8uzdu9nndz48kx2ec4wtyyx2y.png)
Given f(x) expressed as:
![f(x)=-2x^2-3x+6](https://img.qammunity.org/2023/formulas/mathematics/college/fesbn0ns553kmrpekik1f4yt25n04sgsfm.png)
Substitute both functions into the difference quotient;
![\begin{gathered} (-2x^2-4xh-2h^2-3x-3h+6-(-2x^2-3x+6))/(h) \\ \frac{-\cancel{2x^2}-4xh-2h^2-\cancel{3x}-3h+\cancel{6}+\cancel{2x^2}+\cancel{3x}-\cancel{6}}{h} \\ (-4xh-2h^2-3h)/(h) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u7fqyr9xo80coz94kvfqqlmb7jddwqrfh6.png)
Factor out "h" from the result to have
![\begin{gathered} \frac{\cancel{h}(-4x-2h-3)}{\cancel{h}} \\ -4x-2h-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rww9ayacqhzcb2cjdxdqy6g7xebg79awrl.png)
This shows that the simplified form of the expression is -4x - 2h - 3