SOLUTION
3To calculate the test statistics, we use the following steps:
Step 1: We write out the parameters
![\begin{gathered} sample\text{ mean (}\bar{\text{x}}\text{)}=0.9 \\ \text{standard deviation(s)=}0.58 \\ \operatorname{mean}(\mu)=0.8 \\ n=32 \end{gathered}]()
Step 2: Write out the formula for the test statistics (t)
![t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt[]{n}}}](https://img.qammunity.org/2023/formulas/mathematics/college/fgw1dfu5bvrx5y4b036o4donkipli5999q.png)
step 3: Find t
![\begin{gathered} t=\frac{0.9-0.8}{\frac{0.58}{\sqrt[]{32}}} \\ t=(0.1)/(0.1025) \\ t=0.97532 \\ t\approx0.98 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/30h4d38tgi58twbkpekyo0or9xeimvm27n.png)
Hence, the test statistic is approximately 0.98 to two decimal places.