111k views
5 votes
Express the given logarithm as a sum and/or difference of logarithms. Simplify, if possible. assume that all variables represent positive real numbers.

Express the given logarithm as a sum and/or difference of logarithms. Simplify, if-example-1
User Theon
by
8.0k points

1 Answer

3 votes

A


(1)/(8)\log _9r+(1)/(5)\log _9s-2\log _9u^{}

Step-by-step explanation

Step 1

remember some properties of the logarithms:


\begin{gathered} \log (A\cdot B)=\log \text{ A+log B} \\ \log ((a)/(b))=\log \text{ A- log B} \\ \log a^b=b\cdot\text{ log a} \\ \log \sqrt[b]{a}\text{ = }\frac{\text{log A}}{b} \end{gathered}

then


\begin{gathered} \log _9\frac{\sqrt[8]{r}\sqrt[5]{s}}{u^2} \\ \log _9\frac{\sqrt[8]{r}\sqrt[5]{s}}{u^2}=\log _9\sqrt[8]{r}\sqrt[5]{s}-log_9u^2 \\ \log _9\frac{\sqrt[8]{r}\sqrt[5]{s}}{u^2}=\log _9\sqrt[8]{r}+\log _9\sqrt[5]{s}-log_9u^2 \\ \log _9\frac{\sqrt[8]{r}\sqrt[5]{s}}{u^2}=\log _9r^{(1)/(8)}+\log _9s^{(1)/(5)}-2\log _9u \\ \log _9\frac{\sqrt[8]{r}\sqrt[5]{s}}{u^2}=(1)/(8)\log _9r+(1)/(5)\log _9s-2\log _9u^{} \end{gathered}

I hope this helps you

User Ivelis
by
7.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories