72.7k views
4 votes
Verify the identity (tan x + sec x)(sin x+ 1)= cos x ?

User Twils
by
3.7k points

1 Answer

3 votes

Solution


\mleft(\tan x+secx\mright)\mleft(1-\sin x\mright)=cosx
Explanation\colon
\begin{gathered} \tan x=(\sin x)/(\cos x) \\ \sec x=(1)/(\cos x) \\ Startthesimplificationprocess\colon \end{gathered}
\begin{gathered} \mleft((\sin x)/(\cos x)+(1)/(\cos x)\mright)(1-\sin x) \\ ((\sin x+1))/(\cos x)(1-\sin x) \end{gathered}
\begin{gathered} (1-\sin ^2x)/(\cos x) \\ (\cos ^2x)/(\cos x) \end{gathered}

Now, rearrange the pythagorean identity


\begin{gathered} \sin ^2x+\cos ^2x=1 \\ \cos ^2x=1-\sin ^2x \end{gathered}
\begin{gathered} ((\cos x)(\cos x))/(\cos x) \\ =\cos x \end{gathered}


\mleft(\tan x+secx\mright)\mleft(1-\sin x\mright)=cosx

PROOF

Verify the identity (tan x + sec x)(sin x+ 1)= cos x ?-example-1
User Nehal
by
3.7k points