From the problem we have :
![\begin{gathered} \bar{x}=268 \\ \sigma=15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ad1rniqn5jr7ayn8vbjyp8wunrgu9pjue6.png)
Graphically the normal distribution would look like the following
To calculate the value of the probability that a pregnancy will be ad 292 or more days use the table z with its equation
![\begin{gathered} Z=\frac{X-\bar{x}}{\sigma} \\ X=292 \\ Z=(292-268)/(15) \\ Z=(24)/(5) \\ Z=1.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bhsg694wc6y28i26nveldj7ixw9c61m0af.png)
To calculate the probability we have to find the value of Z in the table:
![P(x\ge292)=1-P(x\le292)](https://img.qammunity.org/2023/formulas/mathematics/college/haa31i4nled78bn5ytjjp0bemq7jh0g528.png)
from table Z we know that
![\begin{gathered} P(x\le292)=Z_(1.6) \\ P(x\le292)=0.9452 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mqluh0ko736dynqgr0v7t5mp6tebmibot2.png)
![\begin{gathered} P(x\ge292)=1-P(x\le292) \\ P(x\ge292)=1-1.9452 \\ P(x\ge292)=0.548 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/w0udfd4mge0toac0rcdmks4trwvsvbesi4.png)
The probability that a pregnancy lasts 292 or more days is 5.5%