Let
l be the length of the rectangular field
w be the width of the rectangular field
The rectangular field is 6 times as long as it is wide. This means that
![6w=l\text{ \lparen from the phrase ''six times as long as it is wide''\rparen}](https://img.qammunity.org/2023/formulas/mathematics/college/k8ef7klb4pv3rrdafqnhyj7xybhct3u0j7.png)
Part A:
Using the formula of the perimeter we have the following:
![\begin{gathered} 2l+2w=1050\text{ ft} \\ 2(6w)+2w=1050\text{ ft} \\ 12w+2w=1050\text{ ft} \\ 14w=1050\text{ ft} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xfyqui5l4o7jydgwuulsprssv9k4dtme61.png)
Part B:
Solve for width, and we get
![\begin{gathered} 14w=1050\text{ ft} \\ (14w)/(14)=\frac{1050\text{ ft}}{14} \\ w=75\text{ ft} \\ \\ \text{Therefore, the width of the field is }75\text{ ft}. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/okd9iixg4kjs6xf1flih3ix69h6kw6j291.png)
Substitute the width back to the formula to solve for the length
![\begin{gathered} 2l+2w=1050\text{ ft} \\ 2l+2(75\text{ ft})=1050\text{ ft} \\ 2l+150\text{ ft}=1050\text{ ft} \\ 2l=1050\text{ ft}-150\text{ ft} \\ 2l=900\text{ ft} \\ (2l)/(2)=\frac{900\text{ ft}}{2} \\ l=450\text{ ft} \\ \\ \text{Therefore, the length of the field is }450\text{ ft}. \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7dbchxpplubwyjv2e5a1j5f2apgr7d6ufk.png)