Given:
Mass, m = 0.5 kg
Speed, v = 6 m/s
radius, r = 1.5 m
Let's find the tension in the string.
To find the tension in the string, apply the formula:
![T=(m\omega^2)/(r)](https://img.qammunity.org/2023/formulas/physics/college/eyt1ezlnkid3xwz60yf7p8v55m0hfxzag4.png)
Where;
w is the angular velocity.
To find the angular velocity, apply the formula below:
![\begin{gathered} \omega=(v)/(r) \\ \\ \omega=\frac{6\text{ m/s}}{1.5} \\ \\ \omega=4\text{ rad/s} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/4i5gd5kd0vmnccc5tjgrbjodvylh1k7f07.png)
The angular velocity is 4 rad/sec.
Now, find the centripetal acceleration:
![\begin{gathered} a=r\omega^2 \\ \\ a=1.5*4^2 \\ \\ a=24\text{ m/s}^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/f8bep71gjtmf5l8ztnvx5sg9gpwr33z07e.png)
Now, to find the tension, we have:
![\begin{gathered} T=(mw^2)/(r)=ma \\ \\ T=0.5*24 \\ \\ T=12\text{ N} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/psqk8mafzylzxb1ycchr2er0431nujikgr.png)
Therefore, the tension in the string is 12 N.
ANSWER:
D. 12N