Given:
The sum of three times a first number and twice a second number is 14. If the second number is subtracted from twice the first number, the result is 7.
Required:
Find the numbers.
Step-by-step explanation:
Let the first number be x and the second number be y.
By using the given information the equations become:
![\begin{gathered} 3x+2y=14.....(1) \\ 2x-y=7.......(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vg7e7p6rlf6sibmlqxarn4f00k5q3j0bh6.png)
Multiply equation (2) by 2 .
![4x-2y=14......(3)](https://img.qammunity.org/2023/formulas/mathematics/college/my9do8wuieepr798kvzmvhvdh1wgy0g9yp.png)
Add equations (1) and (3).
![\begin{gathered} 7x=28 \\ x=4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o0y32t2zejlv9hvlaqlk1go5exz6g66rwl.png)
Substitute the value of x in equation (1).
![\begin{gathered} 3(4)+2y=14 \\ 12+2y=14 \\ 2y=2 \\ y=1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vg9u3b7imcx089zhzo93rr1bygqrp3ovs1.png)
The value of x = 4 and y =1.
Final Answer:
The first option is the correct answer.