You need to use the formula for calculate the volume of a sphere:
![V=(4)/(3)\pi r^3](https://img.qammunity.org/2023/formulas/mathematics/high-school/zraet4fw93vx9gjz3iextthjo546ibcpwc.png)
Where "r" is the radius of the sphere.
You know that the diameter of this jawbreaker must be:
![d=13in](https://img.qammunity.org/2023/formulas/mathematics/college/emjdh5dnnq1udewve9vwrk0dtz8a2mvy8a.png)
Since the radius is half the diameter:
![\begin{gathered} r=(13in)/(2) \\ \\ r=6.5in \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pjuhktfh1whnsco8zcnmw0vkhb27cwrxp9.png)
Therefore, substituting this value into the formula and evaluating, you get:
![\begin{gathered} V=((4)/(3))(\pi)(6.5in)^3 \\ \\ V\approx1150.35in^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cd15bpvvokp4yxznwxiq6jhc94hgpk30he.png)
The answer is:
![1150.35in^3](https://img.qammunity.org/2023/formulas/mathematics/college/zxh5mj14oiu74rw6wri5j266mb397b1ud7.png)