Since the three sides of the triangle are given, to get the measure of an angle in the triangle, we can use Cosine Law.
To find the measure of Angle C using Cosine Law, here is the formula:
![\cos C=(a^2+b^2-c^2)/(2ab)](https://img.qammunity.org/2023/formulas/mathematics/college/gcq3tyolpy05hqghvrmdo970ceqo3liwt4.png)
Let's plug in those given information in the question to the formula above.
![\cos C=(10^2+18^2-13^2)/(2(10)(18))](https://img.qammunity.org/2023/formulas/mathematics/college/p5npi4y4nuaj50frq802kfktys7urs4uey.png)
Then, solve.
![\begin{gathered} \cos C=(100+324-169)/(360) \\ \cos C=(255)/(360) \\ C=\cos ^(-1)(255)/(360) \\ C=44.9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zai4lqdx52ch51c1to0q644097psaezc7z.png)
Therefore, the measure of angle C is 44.9°. (Option D)