To solve this problem, we will determine the radius of the sphere using the formula for the SA, then we will use the radius to compute the volume of the sphere. ( We will omit the units to simplify the calculations).
The formula for the surface area of a sphere is:
![SA=4\pi r^2,](https://img.qammunity.org/2023/formulas/mathematics/college/7rzsb506f3pswp1w1nwy2oh6f9ti11f1ge.png)
where r is the radius of the sphere. Therefore,
![314.16=4\pi r^2.](https://img.qammunity.org/2023/formulas/mathematics/college/9i50832habv10w3s2r6e8he7j98zghnroi.png)
Solving the above equation for r, we get:
![\begin{gathered} (314.16)/(4\pi)=r^2, \\ \sqrt{(314.16)/(4\pi)}=r. \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/58f5e85d1nc251i7c8izjhb2iy98knb28w.png)
Therefore, the radius of the sphere is:
![r\approx5\text{ ft.}](https://img.qammunity.org/2023/formulas/mathematics/college/7outg24mn9z3kgcisfxhdqb2z7hd5vfoid.png)
Now, the volume of a sphere is given by the following formula:
![V=(4)/(3)\pi r^3.](https://img.qammunity.org/2023/formulas/mathematics/college/rywdrrq3xbea532qqm04xa447tz846wyid.png)
Substituting the above value, we get:
![V\approx523.6\text{ ft}^3.](https://img.qammunity.org/2023/formulas/mathematics/college/hcbq0tsp2wwww22fxu0h2b2fonwclhgwnx.png)
Answer:
![523.6ft^3.](https://img.qammunity.org/2023/formulas/mathematics/college/vz3gvqgv8epq1isn4bgyubtcoii61d61ew.png)