222k views
5 votes
Find the derivative sin(x² + y) = x + y^2

1 Answer

2 votes

Presuming that the derivative that we are looking for is dy/dx.

Let's determine the derivative of the following equation:


\sin \mleft(x^(2)+y\mright)=x+y^2

We get,


\sin \mleft(x^(2)+y\mright)=x+y^2
\sin \mleft(x^2+y\mright)-x-y^2=\text{ 0}
\frac{d\text{y}}{dx}\lbrack\sin (x^2+y)-x-y^2\text{\rbrack}
\frac{d\text{y}}{dx}\sin (x^2+y)-\frac{d\text{y}}{dx}x+\frac{d\text{y}}{dx}(-y^2)
\cos (x^2+y)\cdot\frac{d\text{y}}{d\text{x}}(x^2\text{ + y) - 1 + 0}
\cos (x^2+y)\cdot(\frac{d\text{y}}{d\text{x}}x^2\text{ + }\frac{d\text{y}}{d\text{x}}\text{y})\text{ - 1}
\cos (x^2+y)\cdot(2x+0)\text{ - 1}
2x\cos (x^2+y)-1

Therefore, the derivative (dy/dx) of sin(x² + y) = x + y^2 is:


2x\cos (x^2+y)-1

User Ed Carrel
by
3.4k points