ANSWER
![\begin{gathered} (a)\text{ }(-6i+7j)ms^(-1) \\ (b)\text{ }9.22\text{ }ms^(-1) \\ (c)\text{ }130.6\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ukiaggoewd899x4r36uzq2rbwz55ki09fh.png)
Step-by-step explanation
(a) To find the velocity of B relative to A, we have to find the vector subtraction of vectors B and A.
Hence, the velocity of B relative to A is:
![B-A=5i+3j-(11i-4j)](https://img.qammunity.org/2023/formulas/physics/college/fdyo02dgv8mvwo3eh47ea3wmlq5j1uee4x.png)
Simplify the expression:
![\begin{gathered} B-A=5i-11i+3j+4j \\ B-A=(-6i+7j)ms^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/b8yknwxh9lq2lrfjhdk5oozd6z7s4pi4ij.png)
That is the velocity of B relative to A.
(b) To find the magnitude of the velocity of B relative to A, apply the formula for the magnitude of a vector:
![|B|=√(x^2+y^2)](https://img.qammunity.org/2023/formulas/physics/college/fgjd99fmilto01axrxkpghfltixealakph.png)
where (x, y) represents the coordinates of the vector
Hence, the magnitude of the velocity of B relative to A is:
![\begin{gathered} |B|=√((-6)^2+(7)^2)=√(36+49) \\ |B|=√(85) \\ |B|=9.22\text{ }ms^(-1) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/gsorvf1yy01p2f87jg5n64u9h0gmeo1uf0.png)
(c) To find the direction of the velocity of B relative to A, apply the formula for the direction of a vector:
![\theta=\tan^(-1)((y)/(x))](https://img.qammunity.org/2023/formulas/physics/college/5dqfrged0g7rjw8v6it4v2gom3eovy54jj.png)
Hence, the direction of the velocity of B relative to A, as an angle from the positive x-axis is:
![\begin{gathered} \theta=\tan^(-1)((7)/(-6)) \\ \theta=\tan^(-1)(-1.1667) \\ \theta=130.6\degree \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/h1yeok6ly8niu5ord9bsquxbsw3mwstq1h.png)
That is the answer.