one way to do this is to solve it (to check your answer)
sqrt 6 x sqrt 10= 7,745
A. SQRT 60 = 7,745 this one is correct
B. 20 no
C. 60 no
D. SQRT 16= 4 no
E. 2 OVER SQRT 15= 7,745 this one is correct
F. SQRT 4 X SQRT 15=7,745 this one is correct
you need to do the sqrt of each number
![\begin{gathered} \sqrt[]{6}\text{ = 2,449 }\sqrt[]{10}=3,16 \\ \sqrt[]{6}\cdot\sqrt[]{10}=\text{ 2,449}\cdot3,16\text{ = 7,74} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/496lz3j7jotdfmrdaprpu9y2fk5xb06f3d.png)
but all this is just a way to check the answer, to solve this you need to apply properties and get to the option, like this=
A=
![\sqrt[]{60}=\sqrt[]{6\cdot10}=\sqrt[]{6}\cdot\sqrt[]{10}](https://img.qammunity.org/2023/formulas/mathematics/college/kxowl7abx7wmzxdrd27or28qttpk4eazl8.png)
so A it's correct
you simplify the sqrt to find out if it's the same
let's make the E
E=
![2\sqrt[]{15}=\sqrt[]{4}\cdot\sqrt[]{15}=\sqrt[]{4\cdot15}=\sqrt[]{60}\text{ =}\sqrt[]{6\cdot10}=\sqrt[]{6}\cdot\sqrt[]{10}](https://img.qammunity.org/2023/formulas/mathematics/college/ksv5jnhi9gan6k20u3bfyvagfa57sijauu.png)
and last one the f
F=
![\sqrt[]{4}\cdot\sqrt[]{15}=\sqrt[]{4\cdot15}=\sqrt[]{60}=\sqrt[]{6\cdot10}=\sqrt[]{6}\cdot\sqrt[]{10}](https://img.qammunity.org/2023/formulas/mathematics/college/1sp1womillq5nyiy9guk7kw1s5bzay4k3g.png)