Answer:
Simplifying the given expression using only positive exponents will give;
![(-2x^2)/(y^5z^7)](https://img.qammunity.org/2023/formulas/mathematics/college/qh388ptsvwilih20deah3dnhxgouxzrjyk.png)
Step-by-step explanation:
Given the expression;
![-2x^2y^(-5)z^(-7)](https://img.qammunity.org/2023/formulas/mathematics/college/mfwl9hq8vugys76n1xupex6lmp5nurhnia.png)
We want to re-write the expression such that it has only positive exponents.
Recall that;
![a^(-n)=(1)/(a^n)](https://img.qammunity.org/2023/formulas/mathematics/high-school/9a80v67ivrb35rc13ek0kkrgx62fn6gchf.png)
Re-writing the given expression, we have;
![\begin{gathered} -2x^2y^(-5)z^(-7)=-2x^2\cdot(1)/(y^5)\cdot(1)/(z^7) \\ =(-2x^2)/(y^5z^7) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/rsmuj646d376l8of68ea5dvnwsgfzok9tu.png)
Therefore, simplifying the given expression using only positive exponents will give;
![(-2x^2)/(y^5z^7)](https://img.qammunity.org/2023/formulas/mathematics/college/qh388ptsvwilih20deah3dnhxgouxzrjyk.png)