![\log _a(b)=c](https://img.qammunity.org/2023/formulas/mathematics/college/ll50y9esur2ul91mmz1rfz7rx2xegf1xk0.png)
Using the definition of the base of a log:
![\log _a(b)=c\equiv a^c=b](https://img.qammunity.org/2023/formulas/mathematics/college/ccess9sldurykkh49rp7tp85w6ulnr6r8a.png)
According to this, c could be a negative number, here's why:
Let's try to find the following logarithm:
![\log _2((1)/(8))=c](https://img.qammunity.org/2023/formulas/mathematics/college/qvberb1ga5plav25rkns2too1f7qlhdw1y.png)
Using the definition of the base of a log:
![2^c=(1)/(8)](https://img.qammunity.org/2023/formulas/mathematics/college/5xp14slbcj4xe4vpoyx7fcchvs0tmf5aej.png)
We can express 8 as 2³:
![2^c=(1)/(2^3)](https://img.qammunity.org/2023/formulas/mathematics/college/99dulfnv7xec71ka5syargdgr6sg3vz6r2.png)
Using the following property:
![a^(-x)=(1)/(a^x)](https://img.qammunity.org/2023/formulas/mathematics/college/5ink0pzh6yvlwzkqlnkeoxxvu1phms93al.png)
We can express the equation as:
![2^c=2^(-3)](https://img.qammunity.org/2023/formulas/mathematics/college/k6yt60wc2d5dxn9ekk11qfqgumumgf9qlu.png)
From this, we can conclude that c = -3, therefore it is possible for x to equal a negative number.