We want to find the solutions for the following inequality
![-(2)/(5)x-9<(9)/(10)](https://img.qammunity.org/2023/formulas/mathematics/high-school/derwoo67bbi04j9zmcegwxjwx1rhjkx8b9.png)
First, we can add 9 on both sides of the inequality
![\begin{gathered} -(2)/(5)x-9+9<(9)/(10)+9 \\ -(2)/(5)x<(9)/(10)+(90)/(10) \\ -(2)/(5)x<(99)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pui71huhjmo66xkdt08nblsvfosfqni4gf.png)
Now, we can multiply both sides by (-1). When we multiply an inequality by a negative number, it changes the sign
![\begin{gathered} -(2)/(5)x\cdot(-1)<(99)/(10)\cdot(-1) \\ (2)/(5)x>-(99)/(10) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/w2crfirqvq6ky2erlub5waxy8vxk3pg8rw.png)
Multiplying both sides by 5, we have
![\begin{gathered} (2)/(5)x\cdot5>-(99)/(10)\cdot5 \\ 2x>-(99)/(2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yjj5hh5rn52vp5ertemgefks7cuysbf87m.png)
And finally, dividing both sides by 2
![\begin{gathered} 2x\cdot(1)/(2)>-(99)/(2)\cdot(1)/(2) \\ x>-(99)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/high-school/yn8sx7xoujywllklpc8cmjz6ktdcydq2v1.png)