Absolute change (AC) refers to the simple difference in the indicator over two periods. that is
![\begin{gathered} \text{AC (Suzanne)=56000-40000} \\ \text{AC (Suzanne)=16000} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b5csgp6f3zty242wz7jcjlyke92xl3vt8v.png)
and, for Mike:
![\begin{gathered} \text{AC (Mike)=53000-3}8000 \\ \text{AC (Mike)=1}5000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/u42f0r8v3xuifw6al8978v71z7or6u8po9.png)
Whose salary grew more in absolute change? Suzanne's salary.
The relative change (RC) express the absolute change as a pencentage of the value of the indicator in the earlier period:
![RC=\frac{value\text{ 2nd period - value 1st period}}{\text{value 1st period}}*100](https://img.qammunity.org/2023/formulas/mathematics/college/2xky9wvb1ls71j581j0igp6juxyfcujt2f.png)
For Suzanne, we have
![\begin{gathered} RC(\text{Suzzane)}=(56000-40000)/(56000)\cdot100 \\ RC(\text{Suzzane)}=(16000)/(56000)\cdot100 \\ RC(\text{Suzzane)}=0.286\cdot100 \\ RC(\text{Suzzane)}=28.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nn15wx7ihd36grk66d73ghtqu51xvpf9ij.png)
and for Mike, we have
![\begin{gathered} RC(\text{Mike)}=(53000-28000)/(53000)\cdot100 \\ RC(\text{Mike)}=(15000)/(53000)\cdot100 \\ RC(\text{Mike)}=0.283\cdot100 \\ RC(\text{Mike)}=28.3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5etdi3pi1lklooac3k16r191svovqse8ze.png)
In percentage change? For Suzanne is 28.6% and for Mike 28.3%