Given in the question:
a.) The slope of the line (m) = 2/3
b.) Point passing through the line, x,y = 6,1
In writing the equation, let's first determine the y-intercept (b) by substituting the value of the slope and the point 6,1 in the slope-intercept formula.
![\text{ y=mx + b}](https://img.qammunity.org/2023/formulas/mathematics/college/qiacrjd5ij0nf90jvw58cz4ripd05f1ned.png)
At m = 2/3 and x,y = 6,1
![\text{ y = mx + b }\rightarrow\text{ 1 = (}(2)/(3))(6)\text{ + b}](https://img.qammunity.org/2023/formulas/mathematics/college/yzgc24tpl3u1ql5t10vixrjfv3rb25b4t5.png)
![\text{ 1 = }(12)/(3)\text{ + b }\rightarrow\text{ 1 = 4 + b}](https://img.qammunity.org/2023/formulas/mathematics/college/7lgkbcwbhxecs88a3t3qgfyh9hw563svci.png)
![\text{ b = 1 - 4}](https://img.qammunity.org/2023/formulas/mathematics/college/jl91f63psg1ipk0zutwwo0ya9479d8pjmx.png)
![\text{ b = -3}](https://img.qammunity.org/2023/formulas/mathematics/college/z6jo6t5qrn390dzrk48h0tiog1o2jg9v0a.png)
Let's now complete the equation by substituting the value of the slope (m) and the y-intercept (b) in the slope-intercept formula.
![\text{ y = mx }+\text{ b }\rightarrow\text{ y = (}(2)/(3))x\text{ + (-3)}](https://img.qammunity.org/2023/formulas/mathematics/college/ohdjj5m5egalg1ibqmfzzonee5l0bgtxdg.png)
![\text{ y = }(2)/(3)x\text{ - 3}](https://img.qammunity.org/2023/formulas/mathematics/college/8uzqxuh53knlvulkqeqz8vt5286aqn6z8i.png)
Therefore, the equation of the line is y=2x/3 - 3.